Potentiation of cytotoxicity of topoisomerase i poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe.

نویسندگان

  • Archie N Tse
  • Gary K Schwartz
چکیده

UCN-01 is a potent inhibitor of the S- and G2-M-phase cell cycle checkpoints by targeting chk1 and possibly chk2 kinases. It has been shown in some, but not all, instances that UCN-01 potentiates the cytotoxicity of DNA-damaging agents selectively in p53-defective cells. We have investigated this concept in HCT116 colon cancer cells treated with the topoisomerase I poison SN-38. SN-38 alone induced a senescence-like sustained G2 arrest without apoptosis. Sequential treatment with SN-38 followed by UCN-01 resulted in enhancement of cytotoxicity by apoptosis assay, whereas the reverse sequence or concurrent treatment did not potentiate apoptosis. Real-time visualization of HCT116 cells labeled with green fluorescent protein-histone 2B or green fluorescent protein-alpha-tubulin revealed that sequential treatment resulted in G2 checkpoint abrogation, and cells entered an aberrant mitosis despite normal assembly of bipolar spindles, resulting in either apoptosis or formation of micronucleated cells. Although p53-null cells were clearly more sensitive than parental HCT116 to undergoing checkpoint abrogation and mitotic death after sequential treatment, this was not accompanied by an increased inhibition of clonogenicity over that induced by SN-38 alone. Conversely, concurrent treatment with SN-38 and UCN-01 resulted in S-phase checkpoint override, an amplified DNA damage response including increased phosphorylation of the DNA double-strand breakage marker H2AX and augmentation of clonogenic inhibition, which was independent of p53. Thus, reported discrepancies in the pharmacology of UCN-01 and the influence of p53 status on treatment outcome appears to stem, in part, from the different schedules used, the specific checkpoints examined, and the assays used to assess cytotoxicity. Moreover, checkpoint abrogation and subsequent apoptosis induced by UCN-01 do not necessarily correlate with reproductive cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53.

BACKGROUND Arrest of the cell cycle in G2 phase following DNA damage helps protect cell viability by allowing time for DNA repair before entry into mitosis (M phase). Abrogation of G2 arrest sensitizes cells to the effects of DNA-damaging agents. UCN-01 (7-hydroxystaurosporine), a protein kinase C inhibitor that may block G2 checkpoint regulation, has been reported to enhance the cytotoxicity o...

متن کامل

A novel indolocarbazole, ICP-1, abrogates DNA damage-induced cell cycle arrest and enhances cytotoxicity: similarities and differences to the cell cycle checkpoint abrogator UCN-01.

DNA damaging agents such as cisplatin arrest cell cycle progression at either G1, S, or G2 phase, although the G1 arrest is only seen in cells expressing the wild-type p53 tumor suppressor protein. We have reported that 7-hydroxystaurosporine (UCN-01) overcomes S and G2 phase arrest and enhances the cytotoxicity of cisplatin. Abrogation of arrest appears to be selective for cells defective in p...

متن کامل

Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation.

The novel concept of anticancer treatment termed "G(2) checkpoint abrogation" aims to target p53-deficient tumor cells and is currently explored in clinical trials. The anticancer drug UCN-01 is used to abrogate a DNA damage-induced G(2) cell cycle arrest leading to mitotic entry and subsequent cell death, which is poorly defined as "mitotic cell death" or "mitotic catastrophe." We show here th...

متن کامل

Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells.

Temozolomide (TMZ) produces O(6)-methylguanine in DNA, which in turn mispairs with thymine, triggering futile DNA mismatch repair (MMR) and ultimately cell death. We found previously that in p53-proficient human glioma cells, TMZ-induced futile DNA MMR resulted not in apoptosis but rather in prolonged, p53- and p21-associated G(2)-M arrest and senescence. Additionally, p53-deficient cells were ...

متن کامل

The protein kinase C inhibitor Gö6976 is a potent inhibitor of DNA damage-induced S and G2 cell cycle checkpoints.

In response to DNA damage, cells arrest progression through the cell cycle at either G(1), S, or G(2). We have reported that UCN-01 (7-hydroxystaurosporine) abrogates DNA damage-induced S and G(2) arrest and enhances cytotoxicity selectively in p53 mutant cells, thus providing a potential, tumor-targeted therapy. Unfortunately, UCN-01 binds avidly to human plasma proteins, limiting bioavailabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 64 18  شماره 

صفحات  -

تاریخ انتشار 2004